## Student Name: Student Number:

## Dept. of Communications & Electronics First Exam, First Semester: 2006/2007

| <b>Course Title: Optical Communications</b> | Date: 7/12/2006       |  |  |
|---------------------------------------------|-----------------------|--|--|
| Course No: (630433)                         | Time Allowed: 1 Hours |  |  |
| Lecturer: Dr. Abdel-Rahman Al-Qawasmi       | No. of Pages: 1       |  |  |

(يرجى كتابة الاسم والرقم الجامعي على ورقة الاسئلة والاجابة)

(7marks)

a- A light-emitting diode radiates 3 mW. This power travels through a group of components with losses -11dB, -7dB and -5 dB, compute:

- 1- The dBm value of radiated power
- 2- Compute the output power.

b- Compute the frequency of a wavelength 0.8  $\mu$ m traveling through a material with refractive index n=1.5.

c- Find the number of photons incident on a detector in 1 ns if the optic power 2  $\mu$ W and the wavelength is 0.8  $\mu$ m. (h=6.626 10<sup>-34</sup> j x s, C=3 10<sup>8</sup> m/s).

## Question 2

Question 1

## (6marks)

a- Write two advantages of Fibers.

b- Find the transmission angle for a light ray that proceeds from air into glass, where  $n_{air}=1$  and  $n_{glass}=1.45$ .

c- Briefly, define the following: (Focal plane), (GRIN rod lens) and (Dispersion). *Question 3* (7marks)

a- Complete the following table and compute the frequencies and data limits for a 5-km.

| Source | $\lambda(\mu m)$ | $\Delta\lambda(nm)$ | $\Delta(	au / L)$ | Optic               | $R_{_{NRZ}} \times L$ | $R_{_{NR}} 	imes L$ | Electrical          |  |
|--------|------------------|---------------------|-------------------|---------------------|-----------------------|---------------------|---------------------|--|
|        |                  |                     | (ns / km)         | $f_{3-dB \times L}$ | $Gbps \times km$ )    | $Gbps \times km$ )  | $f_{3-dB \times L}$ |  |
|        |                  |                     |                   | $(GHz \times km)$   |                       |                     | $(GHz \times km)$   |  |
| LED    | 0.95             | 21                  |                   |                     |                       |                     |                     |  |
| LD     | 0.80             | 0.5                 |                   |                     |                       |                     |                     |  |



b- A uniform collimated beam is focused by a lens whose focal length is 15 mm and whose diameter is 9 mm. The wavelength is  $0.8 \mu$ m. Compute the focused spot size.